Analysis of mice deficient in both REV1 catalytic activity and POLH reveals an unexpected role for POLH in the generation of C to G and G to C transversions during Ig gene hypermutation.

نویسندگان

  • Chie Kano
  • Fumio Hanaoka
  • Ji-Yang Wang
چکیده

Multiple DNA polymerases are involved in the generation of somatic mutations during Ig gene hypermutation. Mice expressing a catalytically inactive REV1 (REV1AA) exhibit reduction of both C to G and G to C transversions and moderate decrease of A/T mutations, whereas DNA polymerase η (POLH) deficiency causes greatly reduced A/T mutations. To investigate whether REV1 and POLH interact genetically and functionally during Ig gene hypermutation, we established REV1AA Polh(-/-) mice and analyzed Ig gene hypermutation in the germinal center (GC) B cells. REV1AA Polh(-/-) mice were born at the expected ratio and developed normally with no apparent gross abnormalities. B-cell development, maturation, Ig gene class switch and the GC B-cell expansion were not affected in these mice. REV1AA Polh(-/-) B cells also exhibited relatively normal sensitivity to etoposide and ionizing radiation. Analysis of somatic mutations in the J(H)4 intronic region revealed that REV1AA Polh(-/-) mice had a further decrease of overall mutation frequency compared with REV1AA or Polh(-/-) mice, indicating that the double deficiency additively affected the generation of mutations. Remarkably, REV1AA Polh(-/-) mice had nearly absent C to G and G to C transversions, suggesting that POLH is essential for the generation of residual C to G and G to C transversions observed in REV1AA mice. These results reveal genetic interactions between REV1 catalytic activity and POLH and identify an alternative pathway, mediated by non-catalytic REV1 and POLH, in the generation of C to G and G to C transversions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice

Somatic hypermutation of Ig genes enables B cells of the germinal center to generate high-affinity immunoglobulin variants. Key intermediates in somatic hypermutation are deoxyuridine lesions, introduced by activation-induced cytidine deaminase. These lesions can be processed further to abasic sites by uracil DNA glycosylase. Mutagenic replication of deoxyuridine, or of its abasic derivative, b...

متن کامل

Somatic hypermutation of immunoglobulin genes: lessons from proliferating cell nuclear antigen mutant mice

Proliferating cell nuclear antigen (PCNA) encircles DNA as a ring-shaped homotrimer and, by tethering DNA polymerases to their template, PCNA serves as a critical replication factor. In contrast to high-fidelity DNA polymerases, the activation of low-fidelity translesion synthesis (TLS) DNA polymerases seems to require damage-inducible monoubiquitylation (Ub) of PCNA at lysine residue 164 (PCNA...

متن کامل

DNA polymerase theta contributes to the generation of C/G mutations during somatic hypermutation of Ig genes.

Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase eta (Poleta) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated mutant mice expressing DNA polymerase (P...

متن کامل

O-8: Some Variations of the TSSK2 Gene May be Associated with Impaired Spermatogenesis

Background: Tssk2, a member of the testis specific serine/threonine kinase (TSSK) family, is expressed predominantly in the testis and crucial for the formation and function of the sperm cells in mouse. Targeted deletion of Tssk1 and 2 in male chimeric mice caused infertility due to haploinsufficiency of the genes. Therefore it is reasonable to postulate that mutations in its human homologue TS...

متن کامل

Novel Single Nucleotide Polymorphisms (SNPs) in Intron 2 and Exon 3 Regions of Leptin Gene in Sumba Ongole Cattle

The bovine leptin (LEP) gene was widely used as a candidate gene for molecular selection to improve productivity traits of cattle. This study was carried out to identify single nucleotide polymorphisms (SNPs) in the LEP gene of Sumba Ongole (SO, Bos indicus) cows using sequencing method. A total of 31 animals were used in this study for analyses. Research showed that total of 16 SNPs w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International immunology

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2012